Test for association between a set of SNPS/genes and continuous or binary outcomes by including variant characteristic information and using (weighted) score statistics.
Note:
mist(
y = phenotypes[, "y_tau"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "continuous"
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 -0.467 0.284 -1.645
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.103 -1.031 0.097
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 3.4e-05
#> + PI (mean effect):
#> * Score = 2.659
#> * P-value = 0.103
#> + TAU (heterogeneous effect):
#> * Score = 1464.924
#> * P-value = 2.37e-05
variants_info[, "effect"] # simulated effect
#> g_variant1 g_variant2 g_variant3 g_variant4 g_variant5 g_variant6
#> -0.1871895 -0.6536863 -0.6635657 -5.7526938 -0.7180167 -0.3196585
#> g_variant7 g_variant8 g_variant9 g_variant10
#> 2.0680578 -0.7141979 -1.8494894 1.2992623
get_same_effect <- names(which(variants_info[, "effect"] > 0))
mist(
y = phenotypes[, "y_tau"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes[, get_same_effect],
Z = variants_info[get_same_effect, 1, drop = FALSE],
method = "liu",
model = "continuous"
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 0.77 0.627 1.228
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.223 -0.475 2.014
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.531
#> + PI (mean effect):
#> * Score = 1.5
#> * P-value = 0.221
#> + TAU (heterogeneous effect):
#> * Score = 0.217
#> * P-value = 0.932
mist(
y = phenotypes[, "y_pi"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "continuous"
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 0.809 0.294 2.75
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.007 0.225 1.392
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.0376
#> + PI (mean effect):
#> * Score = 7.083
#> * P-value = 0.00778
#> + TAU (heterogeneous effect):
#> * Score = 185.198
#> * P-value = 0.793
mist(
y = phenotypes[, "y_taupi"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "continuous"
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 0.248 0.321 0.774
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.441 -0.389 0.885
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.0307
#> + PI (mean effect):
#> * Score = 0.601
#> * P-value = 0.438
#> + TAU (heterogeneous effect):
#> * Score = 1006.125
#> * P-value = 0.0111
variants_info[, "effect"] # simulated effect
#> g_variant1 g_variant2 g_variant3 g_variant4 g_variant5 g_variant6
#> -0.1871895 -0.6536863 -0.6635657 -5.7526938 -0.7180167 -0.3196585
#> g_variant7 g_variant8 g_variant9 g_variant10
#> 2.0680578 -0.7141979 -1.8494894 1.2992623
get_same_effect <- names(which(variants_info[, "effect"] > 0))
mist(
y = phenotypes[, "y_taupi"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes[, get_same_effect],
Z = variants_info[get_same_effect, 1, drop = FALSE],
method = "liu",
model = "continuous"
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 1.517 0.689 2.201
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.03 0.149 2.884
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.121
#> + PI (mean effect):
#> * Score = 4.661
#> * P-value = 0.0308
#> + TAU (heterogeneous effect):
#> * Score = 1.427
#> * P-value = 0.842
mist(
y = phenotypes[, "y_tau"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "continuous",
weight.beta = c(1, 25),
maf = variants_info[, "maf"]
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 -0.467 0.284 -1.645
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.103 -1.031 0.097
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.000115
#> + PI (mean effect):
#> * Score = 2.659
#> * P-value = 0.103
#> + TAU (heterogeneous effect):
#> * Score = 171103.8
#> * P-value = 8.87e-05
variants_info[, "effect"] # simulated effect
#> g_variant1 g_variant2 g_variant3 g_variant4 g_variant5 g_variant6
#> -0.1871895 -0.6536863 -0.6635657 -5.7526938 -0.7180167 -0.3196585
#> g_variant7 g_variant8 g_variant9 g_variant10
#> 2.0680578 -0.7141979 -1.8494894 1.2992623
get_same_effect <- names(which(variants_info[, "effect"] > 0))
mist(
y = phenotypes[, "y_tau"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes[, get_same_effect],
Z = variants_info[get_same_effect, 1, drop = FALSE],
method = "liu",
model = "continuous",
weight.beta = c(1, 25),
maf = variants_info[get_same_effect, "maf"]
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 0.77 0.627 1.228
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.223 -0.475 2.014
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.531
#> + PI (mean effect):
#> * Score = 1.5
#> * P-value = 0.221
#> + TAU (heterogeneous effect):
#> * Score = 25.306
#> * P-value = 0.932
mist(
y = phenotypes[, "y_pi"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "continuous",
weight.beta = c(1, 25),
maf = variants_info[, "maf"]
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 0.809 0.294 2.75
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.007 0.225 1.392
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.0383
#> + PI (mean effect):
#> * Score = 7.083
#> * P-value = 0.00778
#> + TAU (heterogeneous effect):
#> * Score = 23859.6
#> * P-value = 0.81
mist(
y = phenotypes[, "y_taupi"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "continuous",
weight.beta = c(1, 25),
maf = variants_info[, "maf"]
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 0.248 0.321 0.774
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.441 -0.389 0.885
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.0527
#> + PI (mean effect):
#> * Score = 0.601
#> * P-value = 0.438
#> + TAU (heterogeneous effect):
#> * Score = 118494.8
#> * P-value = 0.0212
variants_info[, "effect"] # simulated effect
#> g_variant1 g_variant2 g_variant3 g_variant4 g_variant5 g_variant6
#> -0.1871895 -0.6536863 -0.6635657 -5.7526938 -0.7180167 -0.3196585
#> g_variant7 g_variant8 g_variant9 g_variant10
#> 2.0680578 -0.7141979 -1.8494894 1.2992623
get_same_effect <- names(which(variants_info[, "effect"] > 0))
mist(
y = phenotypes[, "y_taupi"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes[, get_same_effect],
Z = variants_info[get_same_effect, 1, drop = FALSE],
method = "liu",
model = "continuous",
weight.beta = c(1, 25),
maf = variants_info[get_same_effect, "maf"]
)
#> [MiSTr] Linear regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 Mcluster1 1.517 0.689 2.201
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.03 0.149 2.884
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.121
#> + PI (mean effect):
#> * Score = 4.661
#> * P-value = 0.0308
#> + TAU (heterogeneous effect):
#> * Score = 166.235
#> * P-value = 0.842
mist(
y = phenotypes[, "y_binary"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "binary"
)
#> [MiSTr] Logistic regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 GZ 3.576 0.344 3.7
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0 1.935 7.528
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 6.54e-05
#> + PI (mean effect):
#> * Score = 17.527
#> * P-value = 2.83e-05
#> + TAU (heterogeneous effect):
#> * Score = 5.4
#> * P-value = 0.175
variants_info[, "effect"] # simulated effect
#> g_variant1 g_variant2 g_variant3 g_variant4 g_variant5 g_variant6
#> -0.1871895 -0.6536863 -0.6635657 -5.7526938 -0.7180167 -0.3196585
#> g_variant7 g_variant8 g_variant9 g_variant10
#> 2.0680578 -0.7141979 -1.8494894 1.2992623
get_same_effect <- names(which(variants_info[, "effect"] > 0))
mist(
y = phenotypes[, "y_binary"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes[, get_same_effect],
Z = variants_info[get_same_effect, 1, drop = FALSE],
method = "liu",
model = "binary"
)
#> [MiSTr] Logistic regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 GZ 3.279 0.645 1.841
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.066 1.064 14.571
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.154
#> + PI (mean effect):
#> * Score = 3.969
#> * P-value = 0.0463
#> + TAU (heterogeneous effect):
#> * Score = 0.04
#> * P-value = 0.766
mist(
y = phenotypes[, "y_binary"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes,
Z = variants_info[, 1, drop = FALSE],
method = "liu",
model = "binary",
weight.beta = c(1, 25),
maf = variants_info[, "maf"]
)
#> [MiSTr] Logistic regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 GZ 3.576 0.344 3.7
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0 1.935 7.528
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 9.29e-05
#> + PI (mean effect):
#> * Score = 17.527
#> * P-value = 2.83e-05
#> + TAU (heterogeneous effect):
#> * Score = 616.283
#> * P-value = 0.256
variants_info[, "effect"] # simulated effect
#> g_variant1 g_variant2 g_variant3 g_variant4 g_variant5 g_variant6
#> -0.1871895 -0.6536863 -0.6635657 -5.7526938 -0.7180167 -0.3196585
#> g_variant7 g_variant8 g_variant9 g_variant10
#> 2.0680578 -0.7141979 -1.8494894 1.2992623
get_same_effect <- names(which(variants_info[, "effect"] > 0))
mist(
y = phenotypes[, "y_binary"],
X = phenotypes[, paste0("x_cov", 0:2)],
G = genotypes[, get_same_effect],
Z = variants_info[get_same_effect, 1, drop = FALSE],
method = "liu",
model = "binary",
weight.beta = c(1, 25),
maf = variants_info[get_same_effect, "maf"]
)
#> [MiSTr] Logistic regression is ongoing ...
#>
#> MiSTr: Mixed effects Score Test
#> -------------------------------
#>
#> - (Raw) Estimates:
#>
#> SubClusters term.pi.hat estimate.pi.hat std.error.pi.hat statistic.pi.hat
#> 1 1 GZ 3.279 0.645 1.841
#> p.value.pi.hat conf.low.pi.hat conf.high.pi.hat
#> 1 0.066 1.064 14.571
#>
#> - Statistics:
#>
#> + Overall effect:
#> * P-value = 0.154
#> + PI (mean effect):
#> * Score = 3.969
#> * P-value = 0.0463
#> + TAU (heterogeneous effect):
#> * Score = 4.691
#> * P-value = 0.766